WELCOM IN MY SITE
LET'S JOIN AND LEAVE YOUR COMENT

Jumat, 07 Desember 2012

CHOLESTEROL

I. Structure
fig. 1 cholesterol structure

Cholesterol is a fat-sterol-containing metabolites (English: waxy steroid) which is found in cell membranes and circulated in the blood plasma. Is a kind of lipid molecules that are fat or like it. Cholesterol is a special type of lipid called steroids. Steroids are lipids that have special chemical structure. This structure consists of four rings of carbon atoms.
Steroids include steroid hormones such as cortisol, estrogen, and testosterone. In fact, all steroid hormones are made from chemical changes in the basic structure of cholesterol. At about making a molecule of molecular conversion easier, scientists call it synthetic.
Hypercholesterolemia means that the levels of cholesterol in the blood is too high.
Cholesterol can be made ​​synthetically. Cholesterol synthetic currently implemented in widescreen technology (billboards) as an alternative to the LCD.

II. Properties of cholesterol
Properties
Molecular formulaC27H46O
Molar mass386.65 g/mol
Appearancewhite crystalline powder[2]
Density1.052 g/cm3
Melting point
148–150 °C[2]
Boiling point
360 °C (decomposes)
Solubility inwater0.095 mg/L (30 °C)
Solubilitysoluble in acetonebenzene,chloroformethanoletherhexane,isopropyl myristatemethanol
Hazards
Flash point209.3 ±12.4°C [1
III. Biosynthesis of Cholesterol

Slightly less than half of the cholesterol in the body derives from biosynthesis de novo. Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%, of the amount produced each day. Cholesterol synthesis occurs in the cytoplasm and microsomes (ER) from the two-carbon acetate group of acetyl-CoA.
The acetyl-CoA utilized for cholesterol biosynthesis is derived from an oxidation reaction (e.g., fatty acids or pyruvate) in the mitochondria and is transported to the cytoplasm by the same process as that described for fatty acid synthesis (see the Figure below). Acetyl-CoA can also be synthesized from cytosolic acetate derived from cytoplasmicoxidation of ethanol which is initiated by cytoplasmic alcohol dehydrogenase (ADH3). All the reduction reactions of cholesterol biosynthesis use NADPH as a cofactor. The isoprenoid intermediates of cholesterol biosynthesis can be diverted to other synthesis reactions, such as those for dolichol (used in the synthesis of N-linked glycoproteins, coenzyme Q (of the oxidative phosphorylation pathway) or the side chain of heme-a. Additionally, these intermediates are used in the lipid modification of some proteins.
Pathway for the movement of acetyl-CoA units from within the mitochondrion to the cytoplasm for use in lipid and cholesterol biosynthesis. Note that the cytoplasmic malic enzyme catalyzed reaction generates NADPH which can be used for reductive biosynthetic reactions such as those of fatty acid and cholesterol synthesis.
The process of cholesterol synthesis has five major steps:
1. Acetyl-CoAs are converted to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)
2. HMG-CoA is converted to mevalonate
3. Mevalonate is converted to the isoprene based molecule, isopentenyl pyrophosphate (IPP), with the concomitant loss of CO2
4. IPP is converted to squalene
5. Squalene is converted to cholesterol.
athway of cholesterol biosynthesis. Synthesis begins with the transport of acetyl-CoA from the mitochondrion to the cytosol. The rate limiting step occurs at the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reducatase, HMGR catalyzed step. The phosphorylation reactions are required to solubilize the isoprenoid intermediates in the pathway. Intermediates in the pathway are used for the synthesis of prenylated proteins, dolichol, coenzyme Q and the side chain of heme a. The abbreviation "PP" (e.g. isopentenyl-PP) stands for pyrophosphate. Place mouse over intermediate names to see structure.
Acetyl-CoA units are converted to mevalonate by a series of reactions that begins with the formation of HMG-CoA. Unlike the HMG-CoA formed during ketone body synthesis in the mitochondria, this form is synthesized in the cytoplasm. However, the pathway and the necessary enzymes are similar to those in the mitochondria. Two moles of acetyl-CoA are condensed in a reversal of the thiolase reaction, forming acetoacetyl-CoA. The cytoplasmic thiolase enzyme involved in cholesterol biosynthesis is acetoacetyl-CoA thiolase encoded by the ACAT2 gene. Although the bulk of acetoacetyl-CoA is derived via this process, it is possible for some acetoacetate, generated duringketogenesis, to diffuse out of the mitochondria and be converted to acetoacetyl-CoA in the cytosol via the action of acetoacetyl-CoA synthetase (AACS). Acetoacetyl-CoA and a third mole of acetyl-CoA are converted to HMG-CoA by the action of HMG-CoA synthase.
HMG-CoA is converted to mevalonate by HMG-CoA reductase, HMGR (this enzyme is bound in the endoplasmic reticulum, ER). HMGR absolutely requires NADPH as a cofactor and two moles of NADPH are consumed during the conversion of HMG-CoA to mevalonate. The reaction catalyzed by HMGR is the rate limiting step of cholesterol biosynthesis, and this enzyme is subject to complex regulatory controls as discussed below.
Mevalonate is then activated by two successive phosphorylations (catalyzed by mevalonate kinase, and phosphomevalonate kinase), yielding 5-pyrophosphomevalonate. In humans, mevalonate kinase resides in the cytosol indicating that not all the reactions of cholesterol synthesis are catalyzed by membrane-associated enzymes as originally described. After phosphorylation, an ATP-dependent decarboxylation yields isopentenyl pyrophosphate, IPP, an activated isoprenoid molecule. Isopentenyl pyrophosphate is in equilibrium with its isomer, dimethylallyl pyrophosphate, DMPP. One molecule of IPP condenses with one molecule of DMPP to generate geranyl pyrophosphate, GPP. GPP further condenses with another IPP molecule to yield farnesyl pyrophosphate, FPP. Finally, the NADPH-requiring enzyme, squalene synthase catalyzes the head-to-tail condensation of two molecules of FPP, yielding squalene. Like HMGR, squalene synthase is tightly associated with the ER. Squalene undergoes a two step cyclization to yield lanosterol. The first reaction is catalyzed by squalene monooxygenase. This enzyme uses NADPH as a cofactor to introduce molecular oxygen as an epoxide at the 2,3 position of squalene. Through a series of 19 additional reactions, lanosterol is converted to cholesterol.
The terminal reaction in cholesterol biosynthesis is catalyzed by the enzyme 7-dehydrocholesterol reductase encoded by the DHCR7 gene. Functional DHCR7 protein is a 55.5 kDa NADPH-requiring integral membrane protein localized to the microsomal membrane. Deficiency in DHCR7 (due to gene mutations) results in the disorder calledSmith-Lemli-Opitz syndrome, SLOS. SLOS is characterized by increased levels of 7-dehydrocholesterol and reduced levels (15% to 27% of normal) of cholesterol resulting in multiple developmental malformations and behavioral problems.

we can also see of cholesterol biosynthesis with this page :
http://www.cholesterol-and-health.com/Synthesis-Of-Cholesterol.html

IV. Identification Structure
The 13C NMR spectrum below is for an unknown compound with 38 carbons. Several carbons in the spectrum are overlapping with each other, thus, making the interpretation difficult.
To facilitate the process of elucidating the unknown, the 13C NMR spectrum for the unknown (drawn in black) is compared to the 13C NMR spectrum for a pure sample of cholesterol (drawn in red). The signals that line up are part of the same cholesterol scaffold; in all ~25 signals match up. The remaining 13 signals belong to the unknown part that requires further work.


The structures for the unknown and cholesterol are shown below





1 komentar:

  1. I read an article on wikipedia, that cholesterol can be made synthetically. Cholesterol synthetic currently implemented in widescreen technology (billboards) as an alternative to the LCD.
    how to make synthetic cholesterol?

    BalasHapus